
G. Zachmann 37 Sorting Massively Parallel Algorithms 2 July 2014 SS

Visualizing Bitonic Sorting on a Linear Array

1: Sort half-arrays in
opposite directions

2: Compare half-arrays

3: Send larger item in
each pair to the right

Perform 2 & 3
recursively on each half

Initial data sequence

G. Zachmann 38 Sorting Massively Parallel Algorithms 2 July 2014 SS

Example Bitonic Sorting Network

0000
0001
0010
0011
0100
0101

0110
0111
1000
1001
1010
1011

1100
1101
1110
1111

Stage 1 Stage 2 Stage 3 Stage 4

Lanes (threads) Blue box = low-to-high sorter, red box = high-to-low sorter

G. Zachmann 41 Sorting Massively Parallel Algorithms 2 July 2014 SS

Example Run

1

2

3

4

5

6

7

8

8x monotonic lists: (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)

G. Zachmann 42 Sorting Massively Parallel Algorithms 2 July 2014 SS

1

2

3

4

5

6

7

8

Sort the bitonic lists

G. Zachmann 43 Sorting Massively Parallel Algorithms 2 July 2014 SS

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

4x monotonic lists: (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)

G. Zachmann 44 Sorting Massively Parallel Algorithms 2 July 2014 SS

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists

3

8

4

7

2

6

1

5

G. Zachmann 45 Sorting Massively Parallel Algorithms 2 July 2014 SS

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

2x monotonic lists: (3,4,7,8) (6,5,2,1)
1x bitonic list: (3,4,7,8, 6,5,2,1)

G. Zachmann 46 Sorting Massively Parallel Algorithms 2 July 2014 SS

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists

3

2

4

1

7

5

8

6

G. Zachmann 47 Sorting Massively Parallel Algorithms 2 July 2014 SS

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists

2

3

1

4

7

5

8

6

G. Zachmann 48 Sorting Massively Parallel Algorithms 2 July 2014 SS

1

3

2

4

7

6

8

5

2

3

1

4

7

5

8

6

3

2

4

1

7

5

8

6

3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Done!

G. Zachmann 49 Sorting Massively Parallel Algorithms 2 July 2014 SS

Complexity of the Bitonic Sorter

!  Depth complexity (= parallel time complexity):

!  Bitonic merger:

!  Bitonic sorter:

!  Work complexity of bitonic merger:

! Means number of comparators C(n) here

!  Recursive equation for C:

! Overall

!  Remark: there must be some redundancy in the sorting network,
because we know (from merge sort) that n comparisons are
sufficient for merging two sorted sequences

!  Reason for the redundancy?
⟶ because the network is data-independent!

O
�
log n

�

O
�
log

2 n
�

C (n) = 2C (n2) +
n
2 , with C (2) = 1

C (n) = 1
2n log n

G. Zachmann 50 Sorting Massively Parallel Algorithms 2 July 2014 SS

Remarks on Bitonic Sorting

!  Probably most well-known parallel sorting algo / network

!  Fastest algorithm for "small" arrays (or, is it?)

!  Lower bound on depth complexity is

assuming we have n processors

O
�
n log n

�

n
= O

�
log n

�

G. Zachmann 51 Sorting Massively Parallel Algorithms 2 July 2014 SS

!  A nice property: comparators in a bitonic sorter network only
ever compare lines whose label (= binary line number) differs by
exactly one bit!

!  Consequence for the implementation:

! One kernel for all threads

!  Each thread only needs to determine
which bit of its own thread ID to "flip"
⟶ gives the "other" line with which to compare

!  Hence, bitonic sorting is sometimes pictured as well suited for a
log(n)-dimensional hypercube parallel architecture:

!  Each node of the hypercube = one processor

!  Each processor is connected directly to log(n) many other processors

!  In each step, each processor talks to one of its direct neighbors

G. Zachmann 54 Sorting Massively Parallel Algorithms 2 July 2014 SS

Adaptive Bitonic Sorting

!  Theorem 2:
Let a be a bitonic sequence.
Then, we can always find an index q such that

max

�
aq, . . . , aq+ n

2�1

�
 min

�
aq+ n

2
, . . . , aq�1

�

Gabriel Zachmann
Optional

G. Zachmann 55 Sorting Massively Parallel Algorithms 2 July 2014 SS

!  Sketch of proof:

!  Assume (for sake of simplicity) that all elements
in a are distinct

!  Imagine the bitonic sequence as a "line" on a
cylinder

!  Since a is bitonic ⟶ only two inflection points
⟶ each horizontal plane cuts the sequence at
exactly 2 points, and both sub-sequences are
contiguous

!  Use the median m as "cut plane" ⟶
each sub-sequence has length n/2, and
max("lower sequ.") ≤ m ≤ min("upper sequ.")

!  These must be La and Ua , resp.

!  The index of m is exactly index q in Theorem 2

Gabriel Zachmann
Optional

G. Zachmann 56 Sorting Massively Parallel Algorithms 2 July 2014 SS

!  Visualization
of the theorem:

!  Theorem 3:
Any bitonic sequence a can be partitioned into four sub-
sequences (a1, a2, a3, a4) = a, such that

and

0 n-1 q q+n/2

m

|a1|+ |a2| = |a3|+ |a4| = n

2
, |a1| = |a3| , |a2| = |a4|

either (La,Ua) = (a1, a4, a3, a2) or (La,Ua) = (a3, a2, a1, a4)

Gabriel Zachmann
Optional

G. Zachmann 57 Sorting Massively Parallel Algorithms 2 July 2014 SS

Visual "Proof"

0 n-1 n/2 0 n-1 q q+n/2

m

a4 a3 a2 a1

0 n-1 q q+n/2

m

a4 a3 a2 a1

0 n-1

m

La Ua

1. Input Sequence 2. Find q and partition

3. Swap parts 4. Result

Gabriel Zachmann
Optional

G. Zachmann 58 Sorting Massively Parallel Algorithms 2 July 2014 SS

Complexity

!  Finding the median in a bitonic sequence ⟶ log n steps

!  Remark: this algorithm is no longer data-independent!

!  Depth complexity: ⟶ exercise

!  Work complexity of adaptive bitonic merger:

!  Number of comparisons

!  This is optimal!

!  Need a trick to avoid actually copying the subsequences

-  Otherwise the total complexity of a BM(n) would be O(n log n)

!  Trick = bitonic tree (see orig. paper for details)

C (n) = 2C (
n

2

) + log(n) =
k�1X

i=0

2

i
log(

n

2

i
) = 2n � log n � 2

Gabriel Zachmann
Optional

G. Zachmann 59 Sorting Massively Parallel Algorithms 2 July 2014 SS

How to find the median in a bitonic sequence

!  We have

or

(depending on the definition of the median)

!  Finding the minimum in a bitonic sequence takes log(n) steps

median(a) = min(Ua)

median(a) = max(La)

Gabriel Zachmann
Optional

G. Zachmann 60 Sorting Massively Parallel Algorithms 2 July 2014 SS

Topics for Master Theses

!  Lots of different parallel sorting algorithms

!  Our implementation of Adaptive Bitonic Sorting is ancient (on an
ancient architecture [shaders …])

!  Do you love algorithms?

!  Thinking about them?

!  Proving properties?

!  Implementing them super-fast?

!  Then we should talk about a possible master's thesis topic! !

Gabriel Zachmann
Optional

G. Zachmann 61 Sorting Massively Parallel Algorithms 2 July 2014 SS

Application: BVH Construction

!  Bounding volume hierarchies (BVHs): very important data
structure for accelerating geometric queries

!  Applications: ray-scene intersection, collision detection, spatial
data bases, etc.

!  Database people call it often "R-tree" ...

G. Zachmann 62 Sorting Massively Parallel Algorithms 2 July 2014 SS

BVHs in Collision Detection

E F G D

C B
A

F5 G4 G5 F4
F7 G6 G7 F6

D7 E6 E7 D6
E4 D4 D5 E5

A1
B2 B3 C2 C3

5 6 7 4

3 2
1

Object 1 Object 2

G. Zachmann 63 Sorting Massively Parallel Algorithms 2 July 2014 SS

Parallel Construction of BVHs

!  First idea: linearize 3D points/objects by space-filling curve

!  Definition curve:
A curve (with endpoints) is a continuous function with domain in
the unit interval [0, 1] and range in some d-dimensional space.

!  Definition space-filling curve:
A space-filling curve is a curve with a range that covers the entire
2-dimensional unit square (or, more generally, an n-dimensional
hypercube).

G. Zachmann 64 Sorting Massively Parallel Algorithms 2 July 2014 SS

Examples of Space-Filling Curves

Peano curve

Hilbert curve

Z-order curve
(a.k.a. Morton curve)

Z-order curve in 3D

G. Zachmann 65 Sorting Massively Parallel Algorithms 2 July 2014 SS

!  Benefit: a space-filling curve gives a mapping from the unit
square to the unit interval

!  At least, the limit curve does that …

! We can construct a "space-filling" curve only on some specific
(recursion) level, i.e., in practice space-filling curves are never really
space-filling

Example: Z-order for point data

Space-filling curve: mapping from unit square to unit interval
Z-order: map quadrants recursively in order NW, NE, SW, SE

0
1

Example: Z-order for point data

Space-filling curve: mapping from unit square to unit interval
Z-order: map quadrants recursively in order NW, NE, SW, SE

0
1

Example: Z-order for point data

Space-filling curve: mapping from unit square to unit interval
Z-order: map quadrants recursively in order NW, NE, SW, SE

0
1

