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Y Visualizing Bitonic Sorting on a Linear Array g

| I | I | I | I Initial data sequence
I I 1111 I 1
I | | | | I I I 1: Sort half-arrays in
opposite directions
o 1 I I 1
] ] ] ‘ I I l l 2: Compare half-arrays
| | | I I I I | 3: Send larger item in
each pair to the right
o 1 I I 1
I I I I | | | | Perform 2 & 3
recursively on each half
EERERE I I
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Lanes (threads)

0000
0001
0010
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0100
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0110
0111
1000
1001
1010
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1100
1101
1110
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Example Bitonic Sorting Network
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Example Run

gl = NN O 00 DN W

8x monotonic lists: (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)
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— g1 & N M 00N W

G. Zachmann

4x monotonic lists: (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)
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N U1 O 00 N | dh (W

1

G. Zachmann

2x monotonic lists: (3,4,7,8) (6,5,2,1)

1x bitonic list: (3,4,7,8, 6,5,2,1)
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Sort the bitonic lists
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Done!
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U  Complexity of the Bitonic Sorter

" Depth complexity (= parallel time complexity):
= Bitonic merger: O(log n)
= Bitonic sorter: O(Iog2 n)
= Work complexity of bitonic merger:
= Means number of comparators C(n) here
" Recursive equation for C:  C(n) =2C(5)+ 35, with C(2) =1
= Overall C(n) = inlogn

= Remark: there must be some redundancy in the sorting network,
because we know (from merge sort) that n comparisons are
sufficient for merging two sorted sequences

= Reason for the redundancy?
— because the network is data-independent!
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Remarks on Bitonic Sorting

= Probably most well-known parallel sorting algo / network

= Fastest algorithm for "small" arrays (or, is it?)

= Lower bound on depth complexity is
O(n log n)

n
assuming we have n processors

= O(Iog n)
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= A nice property: comparators in a bitonic sorter network only

ever compare lines whose label (= binary line number) differs by
exactly one bit!

= Consequence for the implementation:
= One kernel for all threads

= Each thread only needs to determine
which bit of its own thread ID to "flip"
— gives the "other" line with which to compare

" Hence, bitonic sorting is sometimes pictured as well suited for a
log(n)-dimensional hypercube parallel architecture:
= Each node of the hypercube = one processor
= Each processor is connected directly to log(n) many other processors

= |n each step, each processor talks to one of its direct neighbors
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Adaptive Bitonic Sorting

= Theorem 2:
Let a be a bitonic sequence.
Then, we can always find an index g such that

max(aq, Ce aq+g_1) < mln(aq+g, e
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= Sketch of proof:

= Assume (for sake of simplicity) that all elements

in a are distinct —

I

—

= Imagine the bitonic sequence as a "line" on a \%
cylinder '

= Since a is bitonic — only two inflection points
— each horizontal plane cuts the sequence at
exactly 2 points, and both sub-sequences are
contiguous

= Use the median m as "cut plane" —
each sub-sequence has length n/2, and
max("lower sequ.") < m < min("upper sequ.")

= These must be La and Ua, resp.

= The index of m is exactly index g in Theorem 2
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= Visualization
of the theorem:

" Theorem 3:
Any bitonic sequence a can be partitioned into four sub-
sequences (al, a2, a3 at ) =a, such that
n
@' +|a%| = @’ +[a*| =5 . [a'[=[a% . [a°]=[a"]
and

either (La, Ua) = (a',a* a’>,a’) or (La, Ua)=(a’ a* a' a*)
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U  Complexity

" Finding the median in a bitonic sequence — log n steps
= Remark: this algorithm is no longer data-independent!
= Depth complexity: — exercise

= Work complexity of adaptive bitonic merger:

= Number of comparisons

C(n) = 2C(g) + log(n) = ZT Iog(%) =2n—logn — 2

= This is optimal!
= Need a trick to avoid actually copying the subsequences
- Otherwise the total complexity of a BM(n) would be O(n log n)

= Trick = bitonic tree (see orig. paper for details)
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How to find the median in a bitonic sequence

= We have
median(a) = min(Ua)

or
median(a) = max(La)

(depending on the definition of the median)

* Finding the minimum in a bitonic sequence takes log(n) steps

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

59


Gabriel Zachmann
Optional


eeeeee

U  Topics for Master Theses g2

= Lots of different parallel sorting algorithms

= Our implementation of Adaptive Bitonic Sorting is ancient (on an
ancient architecture [shaders ...])

" Do you love algorithms?
= Thinking about them?
= Proving properties?
= Implementing them super-fast?

" Then we should talk about a possible master's thesis topic! =
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U  Application: BVH Construction ‘o

= Bounding volume hierarchies (BVHs): very important data
structure for accelerating geometric queries

= Applications: ray-scene intersection, collision detection, spatial
data bases, etc.

= Database people call it often "R-tree" ...
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W  BVHs in Collision Detection

Object 1

A

Object 2

1

3

Ny s dy 4

B3
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W  Parallel Construction of BVHs

= First idea: linearize 3D points/objects by space-filling curve

= Definition curve:
A curve (with endpoints) is a continuous function with domain in
the unit interval [0,1] and range in some d-dimensional space.

= Definition space-filling curve:
A space-filling curve is a curve with a range that covers the entire
2-dimensional unit square (or, more generally, an n-dimensional

hypercube).
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Peano curve
-
/]
|

Z-order curve
(a.k.a. Morton curve)

G. Zachmann Massively Parallel Algorithms
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Hilbert curve

Z-order curve in 3D
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= Benefit: a space-filling curve gives a mapping from the unit
square to the unit interval

= At least, the limit curve does that ...
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= We can construct a "space-filling" curve only on some specific
(recursion) level, i.e., in practice space-filling curves are never really
space-filling
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