eeeeee

Y Visualizing Bitonic Sorting on a Linear Array g

| I | I | I | I Initial data sequence
I I 1111 I 1
I | | | | I I I 1: Sort half-arrays in
opposite directions
o 1 I I 1
]]] ‘ I I l l 2: Compare half-arrays
| | | I I I I | 3: Send larger item in
each pair to the right
o 1 I I 1
I I I I | | | | Perform 2 & 3
recursively on each half
EERERE I I

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 37

eeeeee

Lanes (threads)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Example Bitonic Sorting Network

B

ox = low-to-high sorter,

red b

14

T
l

—r—

—r—

’
——

——
—1—

——

*—r—

9
—r

—r—

*——

9 09 09 09 09 09 09 ¢

——

9
—r—

—9 99 9 99 99 9 99

—r—

+—r—

(2
f_'-
V)

«Q
0]

—

wn
—

[«
«Q

?3 —9 9 99 9 9 9 9 9§

Stage 3

eeeeee

Y

Example Run

gl = NN O 00 DN W

8x monotonic lists: (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)

G. Zachmann Massively Parallel Algorithms SS July 2014

ortin

41

eeeee

G. Zachmann

Sort the bitonic lists

Massively Parallel Algorithms

SS

July 2014

Sorting

l.l
7. cG
VR

42

eeeeee

— g1 & N M 00N W

G. Zachmann

4x monotonic lists: (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)

Massively Parallel Algorithms SS July 2014

Sorting

43

eeeeee

3 =
7. CG 5t

VR

3
4
8
| 7 |
5
6
2
1

G. Zachmann

Sort the bitonic lists

Massively Parallel Algorithms SS July 2014 Sorting 44

eeeeee

N U1 O 00 N | dh (W

1

G. Zachmann

2x monotonic lists: (3,4,7,8) (6,5,2,1)

1x bitonic list: (3,4,7,8, 6,5,2,1)

Massively Parallel Algorithms

SS

July 2014

Sorting

45

eeeeee

co N U1 & = N |~ |W

<

G. Zachmann

Sort the bitonic lists

Massively Parallel Algorithms

SS

July 2014

Sorting

5] "
7. cG
VR =

46

eeeeee

" VR ¥

2
1|
_ v 3
il | 4l
| 6
i 5 |
| 7/
| s |

Sort the bitonic lists

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 47

eeeeee

co N o U | h W IIN |-

G. Zachmann

Done!

Massively Parallel Algorithms

SS

July 2014

Sorting

l.l
7. cG
VR

48

eeeeee

U Complexity of the Bitonic Sorter

" Depth complexity (= parallel time complexity):
= Bitonic merger: O(log n)
= Bitonic sorter: O(Iog2 n)
= Work complexity of bitonic merger:
= Means number of comparators C(n) here
" Recursive equation for C: C(n) =2C(5)+ 35, with C(2) =1
= Overall C(n) = inlogn

= Remark: there must be some redundancy in the sorting network,
because we know (from merge sort) that n comparisons are
sufficient for merging two sorted sequences

= Reason for the redundancy?
— because the network is data-independent!

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 49

eeeeee

Y

Remarks on Bitonic Sorting

= Probably most well-known parallel sorting algo / network

= Fastest algorithm for "small" arrays (or, is it?)

= Lower bound on depth complexity is
O(n log n)

n
assuming we have n processors

= O(Iog n)

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

3 "
7. cG
VR =

50

eeeeee

4 wn
7. CG 5t

VR

= A nice property: comparators in a bitonic sorter network only

ever compare lines whose label (= binary line number) differs by
exactly one bit!

= Consequence for the implementation:
= One kernel for all threads

= Each thread only needs to determine
which bit of its own thread ID to "flip"
— gives the "other" line with which to compare

" Hence, bitonic sorting is sometimes pictured as well suited for a
log(n)-dimensional hypercube parallel architecture:
= Each node of the hypercube = one processor
= Each processor is connected directly to log(n) many other processors

= |n each step, each processor talks to one of its direct neighbors

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 51

eeeeee

Adaptive Bitonic Sorting

= Theorem 2:
Let a be a bitonic sequence.
Then, we can always find an index g such that

max(aq, Ce aq+g_1) < mln(aq+g, e

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

54

Gabriel Zachmann
Optional

eeeeee Optional

= Sketch of proof:

= Assume (for sake of simplicity) that all elements

in a are distinct —

I

—

= Imagine the bitonic sequence as a "line" on a \%
cylinder '

= Since a is bitonic — only two inflection points
— each horizontal plane cuts the sequence at
exactly 2 points, and both sub-sequences are
contiguous

= Use the median m as "cut plane" —
each sub-sequence has length n/2, and
max("lower sequ.") < m < min("upper sequ.")

= These must be La and Ua, resp.

= The index of m is exactly index g in Theorem 2

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 55

Gabriel Zachmann
Optional

eeeeee

" VR ¥

= Visualization
of the theorem:

" Theorem 3:
Any bitonic sequence a can be partitioned into four sub-
sequences (al, a2, a3 at) =a, such that
n
@' +|a%| = @’ +[a*| =5 . [a'[=[a% . [a°]=[a"]
and

either (La, Ua) = (a',a* a’>,a’) or (La, Ua)=(a’ a* a' a*)

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 56

Gabriel Zachmann
Optional

Bremen

Y

Visual "Proof"

1. Input Sequence

\——————————— —————
/

G. Zachmann

Massively Parallel Algorithms

Optional

SS

2. Find g and partition

July 2014

Sorting

v
4,

P
o Cece

<n
E-X3)

57

b

Gabriel Zachmann
Optional

eeeeee

U Complexity

" Finding the median in a bitonic sequence — log n steps
= Remark: this algorithm is no longer data-independent!
= Depth complexity: — exercise

= Work complexity of adaptive bitonic merger:

= Number of comparisons

C(n) = 2C(g) + log(n) = ZT Iog(%) =2n—logn — 2

= This is optimal!
= Need a trick to avoid actually copying the subsequences
- Otherwise the total complexity of a BM(n) would be O(n log n)

= Trick = bitonic tree (see orig. paper for details)

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 58

Gabriel Zachmann
Optional

eeeeee

How to find the median in a bitonic sequence

= We have
median(a) = min(Ua)

or
median(a) = max(La)

(depending on the definition of the median)

* Finding the minimum in a bitonic sequence takes log(n) steps

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

59

Gabriel Zachmann
Optional

eeeeee

U Topics for Master Theses g2

= Lots of different parallel sorting algorithms

= Our implementation of Adaptive Bitonic Sorting is ancient (on an
ancient architecture [shaders ...])

" Do you love algorithms?
= Thinking about them?
= Proving properties?
= Implementing them super-fast?

" Then we should talk about a possible master's thesis topic! =

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 60

Gabriel Zachmann
Optional

eeeeee

U Application: BVH Construction ‘o

= Bounding volume hierarchies (BVHs): very important data
structure for accelerating geometric queries

= Applications: ray-scene intersection, collision detection, spatial
data bases, etc.

= Database people call it often "R-tree" ...

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 61

Bremen

W BVHs in Collision Detection

Object 1

A

Object 2

1

3

Ny s dy 4

B3

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

62

eeeeee

W Parallel Construction of BVHs

= First idea: linearize 3D points/objects by space-filling curve

= Definition curve:
A curve (with endpoints) is a continuous function with domain in
the unit interval [0,1] and range in some d-dimensional space.

= Definition space-filling curve:
A space-filling curve is a curve with a range that covers the entire
2-dimensional unit square (or, more generally, an n-dimensional

hypercube).

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 63

eeeee

Peano curve
-
/]
|

Z-order curve
(a.k.a. Morton curve)

G. Zachmann Massively Parallel Algorithms

o

Hilbert curve

Z-order curve in 3D

SS July 2014 Sorting 64

eeeeee

‘VR M

= Benefit: a space-filling curve gives a mapping from the unit
square to the unit interval

= At least, the limit curve does that ...

L —

(////// |

l
OWN\\/

Y/

Z f
} x (|
»/‘/H—\\/

= We can construct a "space-filling" curve only on some specific
(recursion) level, i.e., in practice space-filling curves are never really
space-filling

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 65

